Python 从设计之初就已经是一门面向对象的语言,正因为如此,在 Python 中创建一个类和对象是很容易的。本章节我们将详细介绍 Python 的面向对象编程。
如果你以前没有接触过面向对象的编程语言,那你可能需要先了解一些面向对象语言的一些基本特征,在头脑里头形成一个基本的面向对象的概念,这样有助于你更容易的学习 Python 的面向对象编程。
接下来我们先来简单的了解下面向对象的一些基本特征。
使用 class 语句来创建一个新类,class 之后为类的名称并以冒号结尾,如下实例:
class ClassName:
   '类的帮助信息'   #类文档字符串
   class_suite  #类体 类的帮助信息可以通过 ClassName.__doc__查看。
class_suite 由类成员,方法,数据属性组成。
以下是一个简单的 Python 类实例:
#coding=utf-8
class Employee:
   '所有员工的基类'
   empCount = 0
   def __init__(self, name, salary):
      self.name = name
      self.salary = salary
      Employee.empCount += 1
   
   def displayCount(self):
     print "Total Employee %d" % Employee.empCount
   def displayEmployee(self):
      print "Name : ", self.name,  ", Salary: ", self.salary 类的方法与普通的函数只有一个特别的区别——它们必须有一个额外的第一个参数名称, 按照惯例它的名称是 self。
class Test:
    def prt(self):
        print(self)
        print(self.__class__)
t = Test()
t.prt()以上实例执行结果为:
<__main__.Test instance at 0x10d066878>
__main__.Test从执行结果可以很明显的看出,self代表的是类的实例,代表当前对象的地址,而 self.class 则指向类。
self 不是 Python 关键字,我们把他换成 Vue5教程 也是可以正常执行的:
实例:
class Test:
    def prt(Vue5教程):
        print(Vue5教程)
        print(Vue5教程.__class__)
t = Test()
t.prt()以上实例执行结果为:
<__main__.Test instance at 0x10d066878>
__main__.Test 要创建一个类的实例,你可以使用类的名称,并通过__init__方法接受参数。
"创建 Employee 类的第一个对象"
emp1 = Employee("Zara", 2000)
"创建 Employee 类的第二个对象"
emp2 = Employee("Manni", 5000) 您可以使用点 (.) 来访问对象的属性。使用如下类的名称访问类变量:
emp1.displayEmployee()
emp2.displayEmployee()
print "Total Employee %d" % Employee.empCount 完整实例:
#coding=utf-8
#!/usr/bin/python
class Employee:
   '所有员工的基类'
   empCount = 0
   def __init__(self, name, salary):
      self.name = name
      self.salary = salary
      Employee.empCount += 1
   
   def displayCount(self):
     print "Total Employee %d" % Employee.empCount
   def displayEmployee(self):
      print "Name : ", self.name,  ", Salary: ", self.salary
"创建 Employee 类的第一个对象"
emp1 = Employee("Zara", 2000)
"创建 Employee 类的第二个对象"
emp2 = Employee("Manni", 5000)
emp1.displayEmployee()
emp2.displayEmployee()
print "Total Employee %d" % Employee.empCount 执行以上代码输出结果如下:
Name :  Zara ,Salary:  2000
Name :  Manni ,Salary:  5000
Total Employee 2 你可以添加,删除,修改类的属性,如下所示:
emp1.age = 7  # 添加一个 'age' 属性
emp1.age = 8  # 修改 'age' 属性
del emp1.age  # 删除 'age' 属性 你也可以使用以下函数的方式来访问属性:
hasattr(emp1, 'age')    # 如果存在 'age' 属性返回 True。
getattr(emp1, 'age')    # 返回 'age' 属性的值
setattr(emp1, 'age', 8) # 添加属性 'age' 值为 8
delattr(empl, 'age')    # 删除属性 'age' Python 内置类属性调用实例如下:
#coding=utf-8
#!/usr/bin/python
class Employee:
   '所有员工的基类'
   empCount = 0
   def __init__(self, name, salary):
      self.name = name
      self.salary = salary
      Employee.empCount += 1
   
   def displayCount(self):
     print "Total Employee %d" % Employee.empCount
   def displayEmployee(self):
      print "Name : ", self.name,  ", Salary: ", self.salary
print "Employee.__doc__:", Employee.__doc__
print "Employee.__name__:", Employee.__name__
print "Employee.__module__:", Employee.__module__
print "Employee.__bases__:", Employee.__bases__
print "Employee.__dict__:", Employee.__dict__ 执行以上代码输出结果如下:
Employee.__doc__: 所有员工的基类
Employee.__name__: Employee
Employee.__module__: __main__
Employee.__bases__: ()
Employee.__dict__: {'__module__': '__main__', 'displayCount': <function displayCount at 0x10a939c80>, 'empCount': 0, 'displayEmployee': <function displayEmployee at 0x10a93caa0>, '__doc__': '\xe6\x89\x80\xe6\x9c\x89\xe5\x91\x98\xe5\xb7\xa5\xe7\x9a\x84\xe5\x9f\xba\xe7\xb1\xbb', '__init__': <function __init__ at 0x10a939578>} 同 Java 语言一样,Python 使用了引用计数这一简单技术来追踪内存中的对象。
在 Python 内部记录着所有使用中的对象各有多少引用。
一个内部跟踪变量,称为一个引用计数器。
当对象被创建时, 就创建了一个引用计数, 当这个对象不再需要时, 也就是说, 这个对象的引用计数变为 0 时, 它被垃圾回收。但是回收不是"立即"的, 由解释器在适当的时机,将垃圾对象占用的内存空间回收。
a = 40      # 创建对象  <40>
b = a       # 增加引用, <40> 的计数
c = [b]     # 增加引用.  <40> 的计数
del a       # 减少引用 <40> 的计数
b = 100     # 减少引用 <40> 的计数
c[0] = -1   # 减少引用 <40> 的计数 垃圾回收机制不仅针对引用计数为0的对象,同样也可以处理循环引用的情况。循环引用指的是,两个对象相互引用,但是没有其他变量引用他们。这种情况下,仅使用引用计数是不够的。Python 的垃圾收集器实际上是一个引用计数器和一个循环垃圾收集器。作为引用计数的补充, 垃圾收集器也会留心被分配的总量很大(及未通过引用计数销毁的那些)的对象。 在这种情况下, 解释器会暂停下来, 试图清理所有未引用的循环。
析构函数 __del__ ,__del__在对象消逝的时候被调用,当对象不再被使用时,__del__方法运行:
#coding=utf-8
#!/usr/bin/python
class Point:
   def __init( self, x=0, y=0):
      self.x = x
      self.y = y
   def __del__(self):
      class_name = self.__class__.__name__
      print class_name, "destroyed"
pt1 = Point()
pt2 = pt1
pt3 = pt1
print id(pt1), id(pt2), id(pt3) # 打印对象的id
del pt1
del pt2
del pt3 以上实例运行结果如下:
3083401324 3083401324 3083401324
Point destroyed 注意:通常你需要在单独的文件中定义一个类,
面向对象的编程带来的主要好处之一是代码的重用,实现这种重用的方法之一是通过继承机制。继承完全可以理解成类之间的类型和子类型关系。
需要注意的地方:继承语法 class 派生类名(基类名)://... 基类名写作括号里,基本类是在类定义的时候,在元组之中指明的。
在 Python 中继承中的一些特点:
如果在继承元组中列了一个以上的类,那么它就被称作"多重继承" 。
语法:
派生类的声明,与他们的父类类似,继承的基类列表跟在类名之后,如下所示:
class SubClassName (ParentClass1[, ParentClass2, ...]):
   'Optional class documentation string'
   class_suite 实例:
#coding=utf-8
#!/usr/bin/python
class Parent:        # 定义父类
   parentAttr = 100
   def __init__(self):
      print "调用父类构造函数"
   def parentMethod(self):
      print '调用父类方法'
   def setAttr(self, attr):
      Parent.parentAttr = attr
   def getAttr(self):
      print "父类属性 :", Parent.parentAttr
class Child(Parent): # 定义子类
   def __init__(self):
      print "调用子类构造方法"
   def childMethod(self):
      print '调用子类方法 child method'
c = Child()          # 实例化子类
c.childMethod()      # 调用子类的方法
c.parentMethod()     # 调用父类方法
c.setAttr(200)       # 再次调用父类的方法
c.getAttr()          # 再次调用父类的方法 以上代码执行结果如下:
调用子类构造方法
调用子类方法 child method
调用父类方法
父类属性 : 200 你可以继承多个类
class A:        # 定义类 A
.....
class B:         # 定义类 B
.....
class C(A, B):   # 继承类 A 和 B
..... 你可以使用 issubclass() 或者 isinstance() 方法来检测。
如果你的父类方法的功能不能满足你的需求,你可以在子类重写你父类的方法:
实例:
#coding=utf-8
#!/usr/bin/python
class Parent:        # 定义父类
   def myMethod(self):
      print '调用父类方法'
class Child(Parent): # 定义子类
   def myMethod(self):
      print '调用子类方法'
c = Child()          # 子类实例
c.myMethod()         # 子类调用重写方法 执行以上代码输出结果如下:
调用子类方法 下表列出了一些通用的功能,你可以在自己的类重写:
| 序号 | 方法, 描述 & 简单的调用 | 
|---|---|
| 1 | __init__ ( self [,args...] ) 构造函数 简单的调用方法: obj = className(args)  | 
| 2 | __del__( self ) 析构方法, 删除一个对象 简单的调用方法 : dell obj  | 
| 3 | __repr__( self ) 转化为供解释器读取的形式 简单的调用方法 : repr(obj)  | 
| 4 | __str__( self ) 用于将值转化为适于人阅读的形式 简单的调用方法 : str(obj)  | 
| 5 | __cmp__ ( self, x ) 对象比较 简单的调用方法 : cmp(obj, x)  | 
Python 同样支持运算符重载,实例如下:
#!/usr/bin/python
class Vector:
   def __init__(self, a, b):
      self.a = a
      self.b = b
   def __str__(self):
      return 'Vector (%d, %d)' % (self.a, self.b)
   
   def __add__(self,other):
      return Vector(self.a + other.a, self.b + other.b)
v1 = Vector(2,10)
v2 = Vector(5,-2)
print v1 + v2 以上代码执行结果如下所示:
Vector(7,8)__private_attrs:两个下划线开头,声明该属性为私有,不能在类地外部被使用或直接访问。在类内部的方法中使用时 self.__private_attrs。
在类地内部,使用 def 关键字可以为类定义一个方法,与一般函数定义不同,类方法必须包含参数 self,且为第一个参数
__private_method:两个下划线开头,声明该方法为私有方法,不能在类地外部调用。在类的内部调用 self.__private_methods
#coding=utf-8
#!/usr/bin/python
class JustCounter:
	__secretCount = 0  # 私有变量
	publicCount = 0    # 公开变量
	def count(self):
		self.__secretCount += 1
		self.publicCount += 1
		print self.__secretCount
counter = JustCounter()
counter.count()
counter.count()
print counter.publicCount
print counter.__secretCount  # 报错,实例不能访问私有变量 Python 通过改变名称来包含类名:
1
2
2
Traceback (most recent call last):
  File "test.py", line 17, in <module>
    print counter.__secretCount  # 报错,实例不能访问私有变量
AttributeError: JustCounter instance has no attribute '__secretCount' Python不允许实例化的类访问私有数据,但你可以使用 object._className__attrName 访问属性,将如下代码替换以上代码的最后一行代码:
.........................
print counter._JustCounter__secretCount 执行以上代码,执行结果如下:
1
2
2
2